(编辑:jimmy 日期: 2024/12/29 浏览:2)
学习了简单的知识点,就会想要向有难度的问题挑战,这里必须要夸一夸小伙伴们。不过我们今天不需要做什么程序的测试,只用简单的两个代码对比,小伙伴们就能在其中体会两者的不同和难易程度。scrapy能否适合处理python爬虫调度的问题,小编直接说出答案小伙伴们也不能马上信服,下面就让我们在示例中找寻答案吧。
总的来说,需要使用代码来爬一些数据的大概分为两类人:
非程序员,需要爬一些数据来做毕业设计、市场调研等等,他们可能连 Python 都不是很熟;
程序员,需要设计大规模、分布式、高稳定性的爬虫系统,对他们来说,语言都无所谓的,更别说用不用框架了。
对于一个任何一个已经入门的程序员来说,Python 都算不上一个很复杂的语言,除了不用大括号可能让一些人感觉有些不适应之外,基本上看看语法上手就能写了。但是恰恰是因为我们都是老司机了,所以不能体会到使用一门编程语言对于外行来说可能『比登天还难』。如果不用 scrapy,可能我只需要这样:
import requests def main(): for i in range(100): rsp = requests.get(f"http://www.example.com/{i}.html") with open("example-{i}.txt", "w") as f: f.write(rsp.text) if __name__ == "__main__": main()
就写好了一个简单的爬虫,而使用 scrapy 呢,大概需要这样吧:
import scrapy class QuotesSpider(scrapy.Spider): name = 'quotes' def start_requests(self): urls = [ 'http://quotes.toscrape.com/page/1/', 'http://quotes.toscrape.com/page/2/' ] for url in urls: yield scrapy.Request(url=url, callback=self.parse) def parse(self, response): page = response.url.split('/')[-2] filename = 'quotes-%s.html' % page with open(filename, 'wb') as f: f.write(response.body) self.log('Save file %s' % filename)
先不说代码增长了一倍有余,初学者会问到这些问题:什么是 class?为什么类还有参数?啊,什么是继承?yield 又是什么鬼,那个 scrapy.Request 又是啥?这些都是负担。
既然要开发大型爬虫系统,那么其中很重要的一部分就是爬虫的调度了。一种比较简单的模式是 scheduler 作为 master,全局调度。另一种模式没有 master,所有的爬虫 worker 都是对等的。在实际生产中显然是第一种用的更多。
显然 scheduler 这部分是不能再用一个爬虫框架来实现的,连主循环都没有咋写逻辑呢?我们可能还要实现增量爬取,或者消费业务方发来的爬取请求等各种业务,这块显然是在 scheduler 里面的,那么这个爬虫系统无非是 scheduler 分发任务给各个 worker 来抓取。worker 还可以使用 scrapy 实现,但是呢,这个 worker 其实已经弱化为一层薄薄的 downloader 了,那我要他干嘛呢?scrapy 的核心逻辑也不过是个深度或者广度优先的遍历而已,少一个依赖不好么……
爬虫的工作量要么在反爬,要么在调度等业务逻辑,本身只是一个 requests.get 而已,scrapy 提供的种种抽象对于初学者太复杂,大型系统又用不上,所以个人不推荐使用包括但不限于 scrapy 在内的所有爬虫框架。
内容扩展:
Scrapy模块
1、scheduler:用来存放url队列
2、downloader:发送请求
3、spiders:提取数据和url
4、itemPipeline:数据保存
from twisted.internet import reactor, defer from scrapy.crawler import CrawlerRunner from scrapy.utils.log import configure_logging import time import logging from scrapy.utils.project import get_project_settings #在控制台打印日志 configure_logging() #CrawlerRunner获取settings.py里的设置信息 runner = CrawlerRunner(get_project_settings()) @defer.inlineCallbacks def crawl(): while True: logging.info("new cycle starting") yield runner.crawl("xxxxx") #1s跑一次 time.sleep(1) reactor.stop() crawl() reactor.run()