Angularjs 1.3 中的$parse实例代码

(编辑:jimmy 日期: 2025/1/21 浏览:2)

这次我们来看一下angular的Sandboxing Angular Expressions。关于内置方法的,核心有两块:Lexer和Parser。其中大家对$parse可能更了解一点。好了不多废话,先看Lexer的内部结构:

1.Lexer

//构造函数
var Lexer = function(options) {
 this.options = options;
};
//原型 
Lexer.prototype = {
 constructor: Lexer,
 lex: function(){},
 is: function(){},
 peek: function(){ /* 返回表达式的下一个位置的数据,如果没有则返回false */ },
 isNumber: function(){ /* 判断当前表达式是否是一个数字 */ },
 isWhitespace: function(){/* 判断当前表达式是否是空格符 */},
 isIdent: function(){/* 判断当前表达式是否是英文字符(包含_和$) */},
 isExpOperator: function(){/* 判断当时表达式是否是-,+还是数字 */},
 throwError: function(){ /* 抛出异常 */},
 readNumber: function(){ /* 读取数字 */},
 readIdent: function(){ /* 读取字符 */},
 readString: function(){ /*读取携带''或""的字符串*/ }
};

 这里指出一点,因为是表达式。所以类似"123"这类的东西,在Lexer看来应该算是数字而非字符串。表达式中的字符串必须使用单引号或者双引号来标识。Lexer的核心逻辑在lex方法中:

lex: function(text) {
 this.text = text;
 this.index = 0;
 this.tokens = [];

 while (this.index < this.text.length) {
  var ch = this.text.charAt(this.index);
  if (ch === '"' || ch === "'") {
  /* 尝试判断是否是字符串 */
  this.readString(ch);
  } else if (this.isNumber(ch) || ch === '.' && this.isNumber(this.peek())) {
  /* 尝试判断是否是数字 */
  this.readNumber();
  } else if (this.isIdent(ch)) {
  /* 尝试判断是否是字母 */
  this.readIdent();
  } else if (this.is(ch, '(){}[].,;:"htmlcode">
var OPERATORS = extend(createMap(), {
 '+':function(self, locals, a, b) {
  a=a(self, locals); b=b(self, locals);
  if (isDefined(a)) {
  if (isDefined(b)) {
   return a + b;
  }
  return a;
  }
  return isDefined(b) "htmlcode">
var _l = new Lexer({});
var a = _l.lex("a = a + 1");
console.log(a);

 结合之前的lex方法,我们来回顾下代码执行过程:

1.index指向'a'是一个字母。匹配isIdent成功。将生成的token存入tokens中

2.index指向空格符,匹配isWhitespace成功,同上

3.index指向=,匹配操作运算符成功,同上

4.index指向空格符,匹配isWhitespace成功,同上

5.index指向'a'是一个字母。匹配isIdent成功。同上

7.index指向+,匹配操作运算符成功,同上

8.index指向空格符,匹配isWhitespace成功,同上

9.index指向1,匹配数字成功,同上

以上则是"a = a + 1"的代码执行过程。9步执行结束之后,跳出while循环。刚才我们看到了,每次匹配成功,源码会生成一个token。因为匹配类型的不同,生成出来的token的键值对略有不同:

number:{
  index: start,
  text: number,
  constant: true,
  value: Number(number)
 },
string: {
   index: start,
   text: rawString,
   constant: true,
   value: string
  },
ident: {
  index: start,
  text: this.text.slice(start, this.index),
  identifier: true /* 字符表示 */ 
 },
'(){}[].,;:"操作符": {
  index: this.index, 
  text: token, 
  operator: true
}
//text是表达式,而value才是实际的值

number和string其实都有相对应的真实值,意味着如果我们表达式是2e2,那number生成的token的值value就应该是200。到此我们通过lexer类获得了一个具有token值得数组。从外部看,实际上Lexer是将我们输入的表达式解析成了token json。可以理解为生成了表达式的语法树(AST)。但是目前来看,我们依旧还没有能获得我们定义表达式的结果。那就需要用到parser了。

2.Parser

先看一下Parser的内部结构:

//构造函数
var Parser = function(lexer, $filter, options) {
 this.lexer = lexer;
 this.$filter = $filter;
 this.options = options;
};
//原型
Parser.prototype = {
 constructor: Parser,
 parse: function(){},
 primary: function(){},
 throwError: function(){ /* 语法抛错 */},
 peekToken: function(){},
 peek: function(){/*返回tokens中的第一个成员对象 */},
 peekAhead: function(){ /* 返回tokens中指定成员对象,否则返回false */},
 expect: function(){ /* 取出tokens中第一个对象,否则返回false */ },
 consume: function(){ /* 取出第一个,底层调用expect */ },
 unaryFn: function(){ /* 一元操作 */},
 binaryFn: function(){ /* 二元操作 */},
 identifier: function(){},
 constant: function(){},
 statements: function(){},
 filterChain: function(){},
 filter: function(){},
 expression: function(){},
 assignment: function(){},
 ternary: function(){},
 logicalOR: function(){ /* 逻辑或 */},
 logicalAND: function(){ /* 逻辑与 */ },
 equality: function(){ /* 等于 */ },
 relational: function(){ /* 比较关系 */ },
 additive: function(){ /* 加法,减法 */ },
 multiplicative: function(){ /* 乘法,除法,求余 */ },
 unary: function(){ /* 一元 */ },
 fieldAccess: function(){},
 objectIndex: function(){},
 functionCall: function(){},
 arrayDeclaration: function(){},
 object: function(){}
}

Parser的入口方法是parse,内部执行了statements方法。来看下statements:

statements: function() {
 var statements = [];
 while (true) {
  if (this.tokens.length > 0 && !this.peek('}', ')', ';', ']'))
  statements.push(this.filterChain());
  if (!this.expect(';')) {
  // optimize for the common case where there is only one statement.
  // TODO(size): maybe we should not support multiple statements"htmlcode">
filterChain: function() {
 /* 针对angular语法的filter */
 var left = this.expression();
 var token;
 while ((token = this.expect('|'))) {
  left = this.filter(left);
 }
 return left;
 }

其中filterChain是针对angular表达式独有的"|"filter写法设计的。我们先绕过这块,进入expression

expression: function() {
 return this.assignment();
 }

再看assignment:

assignment: function() {
 var left = this.ternary();
 var right;
 var token;
 if ((token = this.expect('='))) {
  if (!left.assign) {
  this.throwError('implies assignment but [' +
   this.text.substring(0, token.index) + '] can not be assigned to', token);
  }
  right = this.ternary();
  return extend(function $parseAssignment(scope, locals) {
  return left.assign(scope, right(scope, locals), locals);
  }, {
  inputs: [left, right]
  });
 }
 return left;
 }

我们看到了ternary方法。这是一个解析三目操作的方法。与此同时,assignment将表达式以=划分成left和right两块。并且两块都尝试执行ternary。

ternary: function() {
 var left = this.logicalOR();
 var middle;
 var token;
 if ((token = this.expect('"htmlcode">
logicalOR -> logicalAND -> equality -> relational -> additive -> multiplicative -> unary

好吧,嵌套级数确实有点多。那么我们看下unary。

unary: function() {
 var token;
 if (this.expect('+')) {
  return this.primary();
 } else if ((token = this.expect('-'))) {
  return this.binaryFn(Parser.ZERO, token.text, this.unary());
 } else if ((token = this.expect('!'))) {
  return this.unaryFn(token.text, this.unary());
 } else {
  return this.primary();
 }
 }

这边需要看两个主要的方法,一个是binaryFn和primay。如果判断是-,则必须通过binaryFn去添加函数。看下binaryFn

binaryFn: function(left, op, right, isBranching) {
 var fn = OPERATORS[op];
 return extend(function $parseBinaryFn(self, locals) {
  return fn(self, locals, left, right);
 }, {
  constant: left.constant && right.constant,
  inputs: !isBranching && [left, right]
 });
 }

其中OPERATORS是之前聊Lexer也用到过,它根据操作符存储相应的操作函数。看一下fn(self, locals, left, right)。而我们随便取OPERATORS中的一个例子:

'-':function(self, locals, a, b) {
   a=a(self, locals); b=b(self, locals);
   return (isDefined(a) "htmlcode">
var _l = new Lexer({});
var _p = new Parser(_l);
var a = _p.parse("1 + 1 + 2");
console.log(a()); //4

我们看下1+1+2生成的token是什么样的:

[
{"index":0,"text":"1","constant":true,"value":1},{"index":2,"text":"+","operator":true},{"index":4,"text":"1","constant":true,"value":1},{"index":6,"text":"+","operator":true},{"index":8,"text":"2","constant":true,"value":2}
]

Parser根据lexer生成的tokens尝试解析。tokens每一个成员都会生成一个函数,其先后执行逻辑按照用户输入的1+1+2的顺序执行。注意像1和2这类constants为true的token,parser会通过constant生成需要的函数$parseConstant,也就是说1+1+2中的两个1和一个2都是返回$parseConstant函数,通过$parseBinaryFn管理加法逻辑。

constant: function() {
 var value = this.consume().value;

 return extend(function $parseConstant() {
  return value; //这个函数执行之后,就是将value值返回。
 }, {
  constant: true,
  literal: true
 });
 },
binaryFn: function(left, op, right, isBranching) {
 var fn = OPERATORS[op];//加法逻辑
 return extend(function $parseBinaryFn(self, locals) {
  return fn(self, locals, left, right);//left和right分别表示生成的对应函数
 }, {
  constant: left.constant && right.constant,
  inputs: !isBranching && [left, right]
 });
 }

那我们demo中的a应该返回什么函数呢?当然是$parseBinaryFn。其中的left和right分别是1+1的$parseBinaryFn,right就是2的$parseConstant。

再来一个例子:

var _l = new Lexer({});
var _p = new Parser(_l);
var a = _p.parse('{"name": "hello"}');
console.log(a);

这边我们传入一个json,理论上我们执行完a函数,应该返回一个{name: "hello"}的对象。它调用了Parser中的object

object: function() {
 var keys = [], valueFns = [];
 if (this.peekToken().text !== '}') {
  do {
  if (this.peek('}')) {
   // Support trailing commas per ES5.1.
   break;
  }
  var token = this.consume();
  if (token.constant) {
   //把key取出来
   keys.push(token.value);
  } else if (token.identifier) {
   keys.push(token.text);
  } else {
   this.throwError("invalid key", token);
  }
  this.consume(':');
  //冒号之后,则是值,将值存在valueFns中
  valueFns.push(this.expression());
  //根据逗号去迭代下一个
  } while (this.expect(','));
 }
 this.consume('}');
 return extend(function $parseObjectLiteral(self, locals) {
  var object = {};
  for (var i = 0, ii = valueFns.length; i < ii; i++) {
  object[keys[i]] = valueFns[i](self, locals);
  }
  return object;
 }, {
  literal: true,
  constant: valueFns.every(isConstant),
  inputs: valueFns
 });
 }

比方我们的例子{"name": "hello"},object会将name存在keys中,hello则会生成$parseConstant函数存在valueFns中,最终返回$parseObjectLiternal函数。

下一个例子:

var a = _p.parse('{"name": "hello"}["name"]');

这个跟上一个例子的差别在于后面尝试去读取name的值,这边则调用parser中的objectIndex方法。

objectIndex: function(obj) {
 var expression = this.text;
 var indexFn = this.expression();
 this.consume(']');
 return extend(function $parseObjectIndex(self, locals) {
  var o = obj(self, locals), //parseObjectLiteral,实际就是obj
   i = indexFn(self, locals), //$parseConstant,这里就是name
   v;
  ensureSafeMemberName(i, expression);
  if (!o) return undefined;
  v = ensureSafeObject(o[i], expression);
  return v;
 }, {
  assign: function(self, value, locals) {
  var key = ensureSafeMemberName(indexFn(self, locals), expression);
  // prevent overwriting of Function.constructor which would break ensureSafeObject check
  var o = ensureSafeObject(obj(self, locals), expression);
  if (!o) obj.assign(self, o = {}, locals);
  return o[key] = value;
  }
 });
 }

很简单吧,obj[xx]和obj.x类似。大家自行阅读,我们再看一个函数调用的demo

var _l = new Lexer({});
var _p = new Parser(_l, '', {});
var demo = {
 "test": function(){
 alert("welcome");
 }
};
var a = _p.parse('test()');
console.log(a(demo));

我们传入一个test的调用。这边调用了parser中的functionCall方法和identifier方法

identifier: function() {
 var id = this.consume().text;
 //Continue reading each `.identifier` unless it is a method invocation
 while (this.peek('.') && this.peekAhead(1).identifier && !this.peekAhead(2, '(')) {
  id += this.consume().text + this.consume().text;
 }
 return getterFn(id, this.options, this.text);
 }

看一下getterFn方法

...
forEach(pathKeys, function(key, index) {
  ensureSafeMemberName(key, fullExp);
  var lookupJs = (index
      // we simply dereference 's' on any .dot notation
      "' + key + '"))"htmlcode">
function('s', 'l', 'eso', 'fe'){
if(s == null) return undefined;
s=((l&&l.hasOwnProperty("test"))"htmlcode">
functionCall: function(fnGetter, contextGetter) {
 var argsFn = [];
 if (this.peekToken().text !== ')') {
  /* 确认调用时有入参 */
  do {
  //形参存入argsFn
  argsFn.push(this.expression());
  } while (this.expect(','));
 }
 this.consume(')');
 var expressionText = this.text;
 // we can safely reuse the array across invocations
 var args = argsFn.length "htmlcode">
...
return function $parse(exp, interceptorFn, expensiveChecks) {
  var parsedExpression, oneTime, cacheKey;
  switch (typeof exp) {
  case 'string':
   cacheKey = exp = exp.trim();
   var cache = (expensiveChecks ? cacheExpensive : cacheDefault);
   parsedExpression = cache[cacheKey];
   if (!parsedExpression) {
   if (exp.charAt(0) === ':' && exp.charAt(1) === ':') {
    oneTime = true;
    exp = exp.substring(2);
   }
   var parseOptions = expensiveChecks ? $parseOptionsExpensive : $parseOptions;
   //调用lexer和parser
   var lexer = new Lexer(parseOptions);
   var parser = new Parser(lexer, $filter, parseOptions);
   parsedExpression = parser.parse(exp);
   //添加$$watchDelegate,为scope部分提供支持
   if (parsedExpression.constant) {
    parsedExpression.$$watchDelegate = constantWatchDelegate;
   } else if (oneTime) {
    //oneTime is not part of the exp passed to the Parser so we may have to
    //wrap the parsedExpression before adding a $$watchDelegate
    parsedExpression = wrapSharedExpression(parsedExpression);
    parsedExpression.$$watchDelegate = parsedExpression.literal ?
    oneTimeLiteralWatchDelegate : oneTimeWatchDelegate;
   } else if (parsedExpression.inputs) {
    parsedExpression.$$watchDelegate = inputsWatchDelegate;
   }
   //做相关缓存
   cache[cacheKey] = parsedExpression;
   }
   return addInterceptor(parsedExpression, interceptorFn);
  case 'function':
   return addInterceptor(exp, interceptorFn);
  default:
   return addInterceptor(noop, interceptorFn);
  }
 };

总结:Lexer和Parser的实现确实让我大开眼界。通过这两个函数,实现了angular自己的语法解析器。逻辑部分还是相对复杂

以上所述是小编给大家介绍的Angularjs 1.3 中的$parse实例代码,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对网站的支持!

一句话新闻

一文看懂荣耀MagicBook Pro 16
荣耀猎人回归!七大亮点看懂不只是轻薄本,更是游戏本的MagicBook Pro 16.
人们对于笔记本电脑有一个固有印象:要么轻薄但性能一般,要么性能强劲但笨重臃肿。然而,今年荣耀新推出的MagicBook Pro 16刷新了人们的认知——发布会上,荣耀宣布猎人游戏本正式回归,称其继承了荣耀 HUNTER 基因,并自信地为其打出“轻薄本,更是游戏本”的口号。
众所周知,寻求轻薄本的用户普遍更看重便携性、外观造型、静谧性和打字办公等用机体验,而寻求游戏本的用户则普遍更看重硬件配置、性能释放等硬核指标。把两个看似难以相干的产品融合到一起,我们不禁对它产生了强烈的好奇:作为代表荣耀猎人游戏本的跨界新物种,它究竟做了哪些平衡以兼顾不同人群的各类需求呢?