利用numpy和pandas处理csv文件中的时间方法

(编辑:jimmy 日期: 2025/10/7 浏览:2)

环境:numpy,pandas,python3

在机器学习和深度学习的过程中,对于处理预测,回归问题,有时候变量是时间,需要进行合适的转换处理后才能进行学习分析,关于时间的变量如下所示,利用pandas和numpy对csv文件中时间进行处理。

date (UTC) Price 
01/01/2015 0:00 48.1 
01/01/2015 1:00 47.33 
01/01/2015 2:00 42.27
#coding:utf-8
import datetime
import pandas as pd
import numpy as np
import pickle
#用pandas将时间转为标准格式
dateparse = lambda dates: pd.datetime.strptime(dates,'%d/%m/%Y %H:%M')
#将时间栏合并,并转为标准时间格式
rawdata = pd.read_csv('RealMarketPriceDataPT.csv',parse_dates={'timeline':['date','(UTC)']},date_parser=dateparse)
#定义一个将时间转为数字的函数,s为字符串
def datestr2num(s):
 #toordinal()将时间格式字符串转为数字
 return datetime.datetime.strptime(s,'%Y-%m-%d %H:%M:%S').toordinal()
x = []
y = []
new_date = []
for i in range(rawdata.shape[0]):
 x_convert = int(datestr2num(str(rawdata.ix[i,0])))
 new_date.append(x_convert)
 y_convert = rawdata.ix[i,1].astype(np.float32)
 x.append(x_convert)
 y.append(y_convert)
x = np.array(x).astype(np.float32)
"""
with open('price.pickle','wb') as f:
 pickle.dump((x,y),f)
"""
print(datetime.datetime.fromordinal(new_date[0]),'------',new_date[0])
print(datetime.datetime.fromordinal(new_date[10]),'------',new_date[10])
print(datetime.datetime.fromordinal(new_date[20]),'------',new_date[20])
print(datetime.datetime.fromordinal(new_date[30]),'------',new_date[30])
print(datetime.datetime.fromordinal(new_date[40]),'------',new_date[40])
print(datetime.datetime.fromordinal(new_date[50]),'------',new_date[50])

结果

将csv文件中的时间栏合并为一列,并转为方便数据分析的float或int类型

利用numpy和pandas处理csv文件中的时间方法

以上这篇利用numpy和pandas处理csv文件中的时间方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

一句话新闻

一文看懂荣耀MagicBook Pro 16
荣耀猎人回归!七大亮点看懂不只是轻薄本,更是游戏本的MagicBook Pro 16.
人们对于笔记本电脑有一个固有印象:要么轻薄但性能一般,要么性能强劲但笨重臃肿。然而,今年荣耀新推出的MagicBook Pro 16刷新了人们的认知——发布会上,荣耀宣布猎人游戏本正式回归,称其继承了荣耀 HUNTER 基因,并自信地为其打出“轻薄本,更是游戏本”的口号。
众所周知,寻求轻薄本的用户普遍更看重便携性、外观造型、静谧性和打字办公等用机体验,而寻求游戏本的用户则普遍更看重硬件配置、性能释放等硬核指标。把两个看似难以相干的产品融合到一起,我们不禁对它产生了强烈的好奇:作为代表荣耀猎人游戏本的跨界新物种,它究竟做了哪些平衡以兼顾不同人群的各类需求呢?