pandas中read_csv的缺失值处理方式

(编辑:jimmy 日期: 2025/10/2 浏览:2)

今天遇到的问题是,要将一份csv数据读入dataframe,但某些列中含有NA值。对于这些列来说,NA应该作为一个有意义的level,而不是缺失值,但read_csv函数会自动将类似的缺失值理解为缺失值并变为NaN。

看pandas文档中read_csv函数中这两个参数的描述,默认会将'-1.#IND', ‘1.#QNAN', ‘1.#IND', ‘-1.#QNAN', ‘#N/A N/A','#N/A', ‘N/A', ‘NA', ‘#NA', ‘NULL', ‘NaN', ‘-NaN', ‘nan', ‘-nan', ''转换为NaN,且na_values参数还支持定义另外的应处理为缺失值的值。

值得注意的是keep_default_na参数,这个参数的作用是决定要不要保留默认应该转换的缺失值列表,将这个参数设为False之后同时不定义na_values参数,就可以在读取文件时不将任何值转换为缺失值NaN。

例:

import pandas as pd
df = pd.read_csv('train.csv', keep_default_na=False)

以上这篇pandas中read_csv的缺失值处理方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

一句话新闻

高通与谷歌联手!首款骁龙PC优化Chrome浏览器发布
高通和谷歌日前宣布,推出首次面向搭载骁龙的Windows PC的优化版Chrome浏览器。
在对骁龙X Elite参考设计的初步测试中,全新的Chrome浏览器在Speedometer 2.1基准测试中实现了显著的性能提升。
预计在2024年年中之前,搭载骁龙X Elite计算平台的PC将面世。该浏览器的提前问世,有助于骁龙PC问世就获得满血表现。
谷歌高级副总裁Hiroshi Lockheimer表示,此次与高通的合作将有助于确保Chrome用户在当前ARM兼容的PC上获得最佳的浏览体验。