pytorch 实现tensor与numpy数组转换

(编辑:jimmy 日期: 2025/5/15 浏览:2)

看代码,tensor转numpy:

a = torch.ones(2,2)
b = a.numpy()
c=np.array(a) #也可以转numpy数组
print(type(a))
print(type(b))
print(a)
print(b)

输出为:

<class ‘torch.Tensor'>
<class ‘numpy.ndarray'>
tensor([[1., 1.],
[1., 1.]])
[[1. 1.]
[1. 1.]]

numpy转tensor:

import torch
import numpy as np

a = np.ones(5)
b = torch.from_numpy(a)
c=torch.Tensor(a) #也可以转pytorch Tensor
print(type(a))
print(type(b))
print(a)
print(b)

输出为:

<class ‘numpy.ndarray'>
<class ‘torch.Tensor'>
[1. 1. 1. 1. 1.]
tensor([1., 1., 1., 1., 1.], dtype=torch.float64)

可见pytorch的tensor对象与numpy数组是可以相互转换的,且numpy数组的默认类型是double

以上这篇pytorch 实现tensor与numpy数组转换就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

一句话新闻

高通与谷歌联手!首款骁龙PC优化Chrome浏览器发布
高通和谷歌日前宣布,推出首次面向搭载骁龙的Windows PC的优化版Chrome浏览器。
在对骁龙X Elite参考设计的初步测试中,全新的Chrome浏览器在Speedometer 2.1基准测试中实现了显著的性能提升。
预计在2024年年中之前,搭载骁龙X Elite计算平台的PC将面世。该浏览器的提前问世,有助于骁龙PC问世就获得满血表现。
谷歌高级副总裁Hiroshi Lockheimer表示,此次与高通的合作将有助于确保Chrome用户在当前ARM兼容的PC上获得最佳的浏览体验。