pytorch中nn.Conv1d的用法详解

(编辑:jimmy 日期: 2025/5/15 浏览:2)

先粘贴一段official guide:nn.conv1d官方

pytorch中nn.Conv1d的用法详解

我一开始被in_channels、out_channels卡住了很久,结果发现就和conv2d是一毛一样的。话不多说,先粘代码(菜鸡的自我修养)

class CNN1d(nn.Module):

  def __init__(self):
    super(CNN1d,self).__init__()
    self.layer1 = nn.Sequential(
          nn.Conv1d(1,100,2),
          nn.BatchNorm1d(100),
          nn.ReLU(),
          nn.MaxPool1d(8))
    self.layer2 = nn.Sequential(
          nn.Conv1d(100,50,2),
          nn.BatchNorm1d(50),
          nn.ReLU(),
          nn.MaxPool1d(8))
    self.fc = nn.Linear(300,6)
  def forward(self,x):
    #input.shape:(16,1,425)
    out = self.layer1(x)
    out = out.view(out.size(0),-1)
    out = self.fc(out)
    return out

输入的数据格式是(batch_size,word_vector,sequence_length),我设置的batch=16,特征工程样本是1x425,套用该格式就应该是(16,1,425)。对应nn.Conv1d的in_channels=1,out_channels就是你自己设置的,我选择的是100。

因为我做的是分类场景,所以做完两次一维卷积后还要加上一个线性层。

以上这篇pytorch中nn.Conv1d的用法详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

一句话新闻

高通与谷歌联手!首款骁龙PC优化Chrome浏览器发布
高通和谷歌日前宣布,推出首次面向搭载骁龙的Windows PC的优化版Chrome浏览器。
在对骁龙X Elite参考设计的初步测试中,全新的Chrome浏览器在Speedometer 2.1基准测试中实现了显著的性能提升。
预计在2024年年中之前,搭载骁龙X Elite计算平台的PC将面世。该浏览器的提前问世,有助于骁龙PC问世就获得满血表现。
谷歌高级副总裁Hiroshi Lockheimer表示,此次与高通的合作将有助于确保Chrome用户在当前ARM兼容的PC上获得最佳的浏览体验。