终于搞懂了Keras中multiloss的对应关系介绍

(编辑:jimmy 日期: 2025/1/11 浏览:2)

我就废话不多说了,大家还是直接看代码吧~

model = Model(inputs=[src, tgt], outputs=[y, flow])  
#定义网络的时候会给出输入和输出
model.compile(optimizer=Adam(lr=lr), loss=[
           losses.cc3D(), losses.gradientLoss('l2')], loss_weights=[1.0, reg_param]) 
#训练网络的时候指定loss,如果是多loss,
loss weights分别对应前面的每个loss的权重,最后输出loss的和
train_loss = model.train_on_batch(
      [X, atlas_vol], [atlas_vol, zero_flow]) 
 #开始训练,loss中y_pred 和y_true的对应关系是:
 #输出y与atlas_vol算cc3Dloss,输出flow与zero_flow算gradientloss

补充知识:keras服务器用fit_generator跑的代码,loss,acc曲线图的保存

我就废话不多说了,大家还是直接看代码吧~

import matplotlib.pyplot as plt

...  //数据处理代码 省略

history = model.fit_generator(
  image_generator, steps_per_epoch=2000 // 32 ,
  epochs=16, verbose=1,
  validation_data=image_generator_TEST, validation_steps=20
)

print(history.history.keys())
plt.switch_backend('agg')  #服务器上面保存图片 需要设置这个
//acc
plt.plot(history.history['acc'])
plt.plot(history.history['val_acc'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.savefig('acc.jpg')
//loss
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.savefig('loss.jpg')

以上这篇终于搞懂了Keras中multiloss的对应关系介绍就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

一句话新闻

微软与英特尔等合作伙伴联合定义“AI PC”:键盘需配有Copilot物理按键
几个月来,英特尔、微软、AMD和其它厂商都在共同推动“AI PC”的想法,朝着更多的AI功能迈进。在近日,英特尔在台北举行的开发者活动中,也宣布了关于AI PC加速计划、新的PC开发者计划和独立硬件供应商计划。
在此次发布会上,英特尔还发布了全新的全新的酷睿Ultra Meteor Lake NUC开发套件,以及联合微软等合作伙伴联合定义“AI PC”的定义标准。