pytorch实现查看当前学习率

(编辑:jimmy 日期: 2025/1/11 浏览:2)

在pytorch训练过程中可以通过下面这一句代码来打印当前学习率

print(net.optimizer.state_dict()['param_groups'][0]['lr'])

补充知识:Pytorch:代码实现不同层设置不同的学习率,选择性学习某些层参数

1,如何动态调整学习率

在使用pytorch进行模型训练时,经常需要随着训练的进行逐渐降低学习率,在pytorch中给出了非常方面的方法:

假设我们定义了一个优化器:

import torch
import torch.nn as nn
optimizer = torch.optim(model.parameters(), lr = 0.01, momentum = 0.9)

该优化器的初始化学习为0.01,

如果我们学习每个"n" 个epoch把学习率降低为原来的0.9倍,则需要声明一个学习率调节器:

torch.optim.lr_scheduler.StepLR(optimizer, step_size, gamma=0.1, last_epoch=-1)

其中:

optimizer: 前面声明的优化器;

step_size: 每step_size个epoch学习率降低为原来的gamma倍,

last_epoch: 当前所处的epoch

例如:

# Assuming optimizer uses lr = 0.05 for all groups
 # lr = 0.05  if epoch < 30
 # lr = 0.005 if 30 <= epoch < 60
 # lr = 0.0005 if 60 <= epoch < 90
 # ...
 scheduler = StepLR(optimizer, step_size=30, gamma=0.1)
 for epoch in range(100):
  scheduler.step()
  train(...)
  validate(...)

另外其他常用的更新策略类似:

torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma, last_epoch=-1)

torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max, eta_min=0, last_epoch=-1)

torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.1, patience=10, verbose=False, threshold=0.0001, threshold_mode='rel', cooldown=0, min_lr=0, eps=1e-08)

torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda, last_epoch=-1)

2,如何选择性学习某些参数

对于我们现有的模型model,通过调整参数的requires_grad 属性控制该模型是否参与求导运算

for name, param in model.named_parameters():
 if param.requires_grad:
  print("requires_grad: True ", name)
 else:
  print("requires_grad: False ", name)

如果模型中包含多个子模块,可用通过

sub_block = model.children()

获取该模块,然后通过迭代索引的方式获取参数:

for name, param in sub_block.named_parameters()

以上这篇pytorch实现查看当前学习率就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

一句话新闻

微软与英特尔等合作伙伴联合定义“AI PC”:键盘需配有Copilot物理按键
几个月来,英特尔、微软、AMD和其它厂商都在共同推动“AI PC”的想法,朝着更多的AI功能迈进。在近日,英特尔在台北举行的开发者活动中,也宣布了关于AI PC加速计划、新的PC开发者计划和独立硬件供应商计划。
在此次发布会上,英特尔还发布了全新的全新的酷睿Ultra Meteor Lake NUC开发套件,以及联合微软等合作伙伴联合定义“AI PC”的定义标准。