利用python批量爬取百度任意类别的图片的实现方法

(编辑:jimmy 日期: 2025/1/7 浏览:2)

利用python批量爬取百度任意类别的图片时:
(1):设置类别名字。
(2):设置类别的数目,即每一类别的的图片数量。
(3):编辑一个txt文件,命名为name.txt,在txt文件中输入类别,此类别即为关键字。并将txt文件与python源代码放在同一个目录下。

利用python批量爬取百度任意类别的图片的实现方法

python源代码:

# -*- coding: utf-8 -*-
"""
Created on Sun Sep 13 21:35:34 2020
@author: ydc
"""
import re
import requests
from urllib import error
from bs4 import BeautifulSoup
import os

num = 0
numPicture = 0
file = ''
List = []
def Find(url, A):
  global List
  print('正在检测图片总数,请稍等.....')
  t = 0
  i = 1
  s = 0
  while t < 1000:
    Url = url + str(t)
    try:
      # 这里搞了下
      Result = A.get(Url, timeout=7, allow_redirects=False)
    except BaseException:
      t = t + 60
      continue
    else:
      result = Result.text
      pic_url = re.findall('"objURL":"(.*",', result, re.S) # 先利用正则表达式找到图片url
      s += len(pic_url)
      if len(pic_url) == 0:
        break
      else:
        List.append(pic_url)
        t = t + 60
  return s
def recommend(url):
  Re = []
  try:
    html = requests.get(url, allow_redirects=False)
  except error.HTTPError as e:
    return
  else:
    html.encoding = 'utf-8'
    bsObj = BeautifulSoup(html.text, 'html.parser')
    div = bsObj.find('div', id='topRS')
    if div is not None:
      listA = div.findAll('a')
      for i in listA:
        if i is not None:
          Re.append(i.get_text())
    return Re
def dowmloadPicture(html, keyword):
  global num
  # t =0
  pic_url = re.findall('"objURL":"(.*",', html, re.S) # 先利用正则表达式找到图片url
  print('找到关键词:' + keyword + '的图片,即将开始下载图片...')
  for each in pic_url:
    print('正在下载第' + str(num + 1) + '张图片,图片地址:' + str(each))
    try:
      if each is not None:
        pic = requests.get(each, timeout=7)
      else:
        continue
    except BaseException:
      print('错误,当前图片无法下载')
      continue
    else:
      string = file + r'\\' + keyword + '_' + str(num) + '.jpg'
      fp = open(string, 'wb')
      fp.write(pic.content)
      fp.close()
      num += 1
    if num >= numPicture:
      return
if __name__ == '__main__': # 主函数入口
  headers = {
    'Accept-Language': 'zh-CN,zh;q=0.8,zh-TW;q=0.7,zh-HK;q=0.5,en-US;q=0.3,en;q=0.2',
    'Connection': 'keep-alive',
    'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64; rv:60.0) Gecko/20100101 Firefox/60.0',
    'Upgrade-Insecure-Requests': '1'
  }
  A = requests.Session()
  A.headers = headers
  ###############################
  tm = int(input('请输入每类图片的下载数量 '))
  numPicture = tm
  line_list = []
  with open('./name.txt', encoding='utf-8') as file:
    line_list = [k.strip() for k in file.readlines()] # 用 strip()移除末尾的空格
  for word in line_list:
    url = 'https://image.baidu.com/search/flip?tn=baiduimage&ie=utf-8&word=' + word + '&pn='
    tot = Find(url, A)
    Recommend = recommend(url) # 记录相关推荐
    print('经过检测%s类图片共有%d张' % (word, tot))
    file = word + '文件'
    y = os.path.exists(file)
    if y == 1:
      print('该文件已存在,请重新输入')
      file = word + '文件夹2'
      os.mkdir(file)
    else:
      os.mkdir(file)
    t = 0
    tmp = url
    while t < numPicture:
      try:
        url = tmp + str(t)
        # result = requests.get(url, timeout=10)
        # 这里搞了下
        result = A.get(url, timeout=10, allow_redirects=False)
        print(url)
      except error.HTTPError as e:
        print('网络错误,请调整网络后重试')
        t = t + 60
      else:
        dowmloadPicture(result.text, word)
        t = t + 60
    # numPicture = numPicture + tm
  print('当前搜索结束,感谢使用')

一句话新闻

一文看懂荣耀MagicBook Pro 16
荣耀猎人回归!七大亮点看懂不只是轻薄本,更是游戏本的MagicBook Pro 16.
人们对于笔记本电脑有一个固有印象:要么轻薄但性能一般,要么性能强劲但笨重臃肿。然而,今年荣耀新推出的MagicBook Pro 16刷新了人们的认知——发布会上,荣耀宣布猎人游戏本正式回归,称其继承了荣耀 HUNTER 基因,并自信地为其打出“轻薄本,更是游戏本”的口号。
众所周知,寻求轻薄本的用户普遍更看重便携性、外观造型、静谧性和打字办公等用机体验,而寻求游戏本的用户则普遍更看重硬件配置、性能释放等硬核指标。把两个看似难以相干的产品融合到一起,我们不禁对它产生了强烈的好奇:作为代表荣耀猎人游戏本的跨界新物种,它究竟做了哪些平衡以兼顾不同人群的各类需求呢?