python利用opencv保存、播放视频

(编辑:jimmy 日期: 2025/1/4 浏览:2)

代码已上传至:https://gitee.com/tqbx/python-opencv/tree/master/Getting_started_videos

目标

学习读取视频,播放视频,保存视频。
学习从相机中捕捉帧并展示。
学习cv2.VideoCapture(),cv2.VideoWriter()的使用

从相机中捕捉视频

通过自带摄像头捕捉视频,并将其转化为灰度视频显示出来。

基本步骤如下:

1.首先创建一个VideoCapture对象,它的参数包含两种:

  • 设备索引,指定摄像机的编号。
  • 视频文件的名称。

2.逐帧捕捉。

3.释放捕捉物。

import numpy as np
import cv2 as cv
cap = cv.VideoCapture(0)
if not cap.isOpened():
  print("Cannot open camera")
  exit()
while True:
  # Capture frame-by-frame
  ret, frame = cap.read()
  # if frame is read correctly ret is True
  if not ret:
    print("Can't receive frame (stream end")
    break
  # Our operations on the frame come here
  gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)
  # Display the resulting frame
  cv.imshow('frame', gray)
  if cv.waitKey(1) == ord('q'):
    break
# When everything done, release the capture
cap.release()
cv.destroyAllWindows()

其他:

  • cap.read()返回布尔值,如果frame读取正确,为True,可以通过这个值判断视频是否已经结束。
  • 有时,cap可能会初始化捕获失败,可以通过cap.isOpened()来检查其是否被初始化,如果为True那是最好,如果不是,可以使用cap.open()来尝试打开它。
  • 当然,你可以使用cap.get(propId)的方式获取视频的一些属性,如帧的宽度,帧的高度,帧速等。propId是0-18的数字,每个数字代表一个属性,对应关系见底部附录。
  • 既然可以获取,当然也可以尝试设置,假设想要设置帧的宽度和高度为320和240:cap.set(3,320), cap.set(4,240)

从文件中播放视频

代码和从相机中捕获视频基本相同,不同之处在于传入VideoCapture的参数,此时传入视频文件的名称。

在显示每一帧的时候,可以使用cv2.waitKey()设置适当的时间,如果值很小,视频将会很快。正常情况下,25ms就ok。

import numpy as np
import cv2

cap = cv2.VideoCapture('vtest.avi')

while(cap.isOpened()):
  ret, frame = cap.read()

  gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

  cv2.imshow('frame',gray)
  if cv2.waitKey(1) & 0xFF == ord('q'):
    break

cap.release()
cv2.destroyAllWindows()

保存视频

1.创建一个VideoWriter 对象,指定如下参数:

  • 输出的文件名,如output.avi。
  • FourCC code。
  • 每秒的帧数fps。
  • 帧的size。

2.FourCC code传递有两种方式:

  • fourcc = cv2.VideoWriter_fourcc(*'XVID')
  • fourcc = cv2.VideoWriter_fourcc('X','V','I','D')

3.FourCC是一个用于指定视频编解码器的4字节代码。

  • In Fedora: DIVX, XVID, MJPG, X264, WMV1, WMV2. (XVID is more preferable. MJPG results in high size video. X264 gives very small size video)
  • In Windows: DIVX (More to be tested and added)
  • In OSX : (I don't have access to OSX. Can some one fill this"htmlcode">
    import numpy as np
    import cv2
    
    cap = cv2.VideoCapture(0)
    
    # Define the codec and create VideoWriter object
    fourcc = cv2.VideoWriter_fourcc(*'XVID')
    out = cv2.VideoWriter('output.avi',fourcc, 20.0, (640,480))
    
    while(cap.isOpened()):
      ret, frame = cap.read()
      if ret==True:
        frame = cv2.flip(frame,0)
    
        # write the flipped frame
        out.write(frame)
    
        cv2.imshow('frame',frame)
        if cv2.waitKey(1) & 0xFF == ord('q'):
          break
      else:
        break
    
    # Release everything if job is finished
    cap.release()
    out.release()
    cv2.destroyAllWindows()

    附录

    • CV_CAP_PROP_POS_MSEC Current position of the video file in milliseconds or video capture timestamp.
    • CV_CAP_PROP_POS_FRAMES 0-based index of the frame to be decoded/captured next.
    • CV_CAP_PROP_POS_AVI_RATIO Relative position of the video file: 0 - start of the film, 1 - end of the film.
    • CV_CAP_PROP_FRAME_WIDTH Width of the frames in the video stream.
    • CV_CAP_PROP_FRAME_HEIGHT Height of the frames in the video stream.
    • CV_CAP_PROP_FPS Frame rate.
    • CV_CAP_PROP_FOURCC 4-character code of codec.
    • CV_CAP_PROP_FRAME_COUNT Number of frames in the video file.
    • CV_CAP_PROP_FORMAT Format of the Mat objects returned by retrieve() .
    • CV_CAP_PROP_MODE Backend-specific value indicating the current capture mode.
    • CV_CAP_PROP_BRIGHTNESS Brightness of the image (only for cameras).
    • CV_CAP_PROP_CONTRAST Contrast of the image (only for cameras).
    • CV_CAP_PROP_SATURATION Saturation of the image (only for cameras).
    • CV_CAP_PROP_HUE Hue of the image (only for cameras).
    • CV_CAP_PROP_GAIN Gain of the image (only for cameras).
    • CV_CAP_PROP_EXPOSURE Exposure (only for cameras).
    • CV_CAP_PROP_CONVERT_RGB Boolean flags indicating whether images should be converted to RGB.
    • CV_CAP_PROP_WHITE_BALANCE_U The U value of the whitebalance setting (note: only supported by DC1394 v 2.x backend currently)
    • CV_CAP_PROP_WHITE_BALANCE_V The V value of the whitebalance setting (note: only supported by DC1394 v 2.x backend currently)
    • CV_CAP_PROP_RECTIFICATION Rectification flag for stereo cameras (note: only supported by DC1394 v 2.x backend currently)
    • CV_CAP_PROP_ISO_SPEED The ISO speed of the camera (note: only supported by DC1394 v 2.x backend currently)
    • CV_CAP_PROP_BUFFERSIZE Amount of frames stored in internal buffer memory (note: only supported by DC1394 v 2.x backend currently)

    参考阅读

    Getting Started with Videos

    作者:天乔巴夏丶
    出处:https://www.cnblogs.com/summerday152/
    本文已收录至Gitee:https://gitee.com/tqbx/JavaBlog
    若有兴趣,可以来参观本人的个人小站:https://www.hyhwky.com

    以上就是python利用opencv保存、播放视频的详细内容,更多关于python opencv的资料请关注其它相关文章!

一句话新闻

微软与英特尔等合作伙伴联合定义“AI PC”:键盘需配有Copilot物理按键
几个月来,英特尔、微软、AMD和其它厂商都在共同推动“AI PC”的想法,朝着更多的AI功能迈进。在近日,英特尔在台北举行的开发者活动中,也宣布了关于AI PC加速计划、新的PC开发者计划和独立硬件供应商计划。
在此次发布会上,英特尔还发布了全新的全新的酷睿Ultra Meteor Lake NUC开发套件,以及联合微软等合作伙伴联合定义“AI PC”的定义标准。