(编辑:jimmy 日期: 2024/12/27 浏览:2)
适用类型:解决二分类问题
逻辑回归的出现:线性回归可以预测连续值,但是不能解决分类问题,我们需要根据预测的结果判定其属于正类还是负类。所以逻辑回归就是将线性回归的结果,通过Sigmoid函数映射到(0,1)之间
线性回归的决策函数:数据与θ的乘法,数据的矩阵格式(样本数×列数),θ的矩阵格式(列数×1)
将其通过Sigmoid函数,获得逻辑回归的决策函数
可以对(-∞, +∞)的结果,映射到(0, 1)之间作为概率
可以将1/2作为决策边界
数学特性好,求导容易
线性回归的损失函数维平方损失函数,如果将其用于逻辑回归的损失函数,则其数学特性不好,有很多局部极小值,难以用梯度下降法求解最优
这里使用对数损失函数
解释:如果一个样本为正样本,那么我们希望将其预测为正样本的概率p越大越好,也就是决策函数的值越大越好,则logp越大越好,逻辑回归的决策函数值就是样本为正的概率;如果一个样本为负样本,那么我们希望将其预测为负样本的概率越大越好,也就是(1-p)越大越好,即log(1-p)越大越好
为什么使用对数函数:样本集中有很多样本,要求其概率连乘,概率为0-1之间的数,连乘越来越小,利用log变换将其变为连加,不会溢出,不会超出计算精度
损失函数:: y(1->m)表示Sigmoid值(样本数×1),hθx(1->m)表示决策函数值(样本数×1),所以中括号的值(1×1)
import numpy as np from matplotlib import pyplot as plt "font.sans-serif"] = ["SimHei"] # 包含数据和标签的数据集 self.data = np.loadtxt("./data2.txt", delimiter=",") self.data_mat = self.data[:, 0:2] self.label_mat = self.data[:, 2] self.thetas = np.zeros((self.data_mat.shape[1])) """ 损失函数具体实现 :param theta: 逻辑回归系数 :param data_mat: 带有截距项的数据集 :param label_mat: 标签数据集 :param reg: :return: """ m = self.label_mat.size label_mat = self.label_mat.reshape(-1, 1) h = self.sigmoid(self.p_data_mat.dot(theta)) """ 逻辑回归梯度下降收敛函数 :param alpha: 学习率 :param reg: :param iterations: 最大迭代次数 :return: 逻辑回归系数组 """ m, n = self.p_data_mat.shape theta = np.zeros((n, 1)) theta_set = [] "negative", pos_text="positive", thetas=None): neg = self.label_mat == 0 pos = self.label_mat == 1 fig1 = plt.figure(figsize=(12, 8)) ax1 = fig1.add_subplot(111) ax1.scatter(self.p_data_mat[neg][:, 1], self.p_data_mat[neg][:, 2], marker="o", s=100, label=neg_text) ax1.scatter(self.p_data_mat[pos][:, 1], self.p_data_mat[pos][:, 2], marker="+", s=100, label=pos_text) ax1.set_xlabel(x_label, fontsize=14) "线性不可分数据集") "$\\lambda$ = {}".format(0)) "$\\lambda$ = {}".format(0))
import numpy as np from matplotlib import pyplot as plt "font.sans-serif"] = ["SimHei"] # 包含数据和标签的数据集 self.data = np.loadtxt("./data2.txt", delimiter=",") self.data_mat = self.data[:, 0:2] self.label_mat = self.data[:, 2] self.thetas = np.zeros((self.data_mat.shape[1])) """ 损失函数具体实现 :param theta: 逻辑回归系数 :param data_mat: 带有截距项的数据集 :param label_mat: 标签数据集 :param reg: :return: """ m = self.label_mat.size label_mat = self.label_mat.reshape(-1, 1) h = self.sigmoid(self.p_data_mat.dot(theta)) """ 逻辑回归梯度下降收敛函数 :param alpha: 学习率 :param reg: :param iterations: 最大迭代次数 :return: 逻辑回归系数组 """ m, n = self.p_data_mat.shape theta = np.zeros((n, 1)) theta_set = [] "negative", pos_text="positive", thetas=None): neg = self.label_mat == 0 pos = self.label_mat == 1 fig1 = plt.figure(figsize=(12, 8)) ax1 = fig1.add_subplot(111) ax1.scatter(self.p_data_mat[neg][:, 1], self.p_data_mat[neg][:, 2], marker="o", s=100, label=neg_text) ax1.scatter(self.p_data_mat[pos][:, 1], self.p_data_mat[pos][:, 2], marker="+", s=100, label=pos_text) ax1.set_xlabel(x_label, fontsize=14) "线性不可分数据集") "$\\lambda$ = {}".format(0)) "$\\lambda$ = {}".format(0))
以上就是python 实现逻辑回归的详细内容,更多关于python 实现逻辑回归的资料请关注其它相关文章!