Python中生成ndarray实例讲解

(编辑:jimmy 日期: 2024/12/26 浏览:2)

生成ndarray最简单的方法就是array函数,array函数接受任意的序列型对象,生成一个新的包含传递数据的NumPy数组。例子如下:

import numpy as np
data1 = [1, 2, 3, 4]
data2 = [[1, 2, 3, 4], [5, 6, 7, 8]]
arr1 = np.array(data1)
arr2 = np.array(data2)
arr1 = arr1 * 10
arr2 = arr2 + arr1
print(arr1)
print(arr2)

结果如下

[10 20 30 40]

[[11 22 33 44]

[15 26 37 48]]

实例扩展:

矩阵乘:按照线性代数的乘法

> a = np.array([[1,2,3], [2,3,4]])
> b = np.array([[1,2], [3,4], [5,6]])
> a
array([[1, 2, 3],
  [2, 3, 4]])
> b
array([[1, 2],
  [3, 4],
  [5, 6]])
> np.dot(a, b)  #方法一
array([[22, 28],
  [31, 40]])
> np.matmul(a,b) #方法二
array([[22, 28],

注:一维数组之间运算时,dot()表示的是内积。

点乘:对应位置相乘

> a = np.array([[1,2],[3,4]])
> b = np.array([[1,1],[2,2]])
> a
array([[1, 2],
  [3, 4]])
> b
array([[1, 1],
  [2, 2]])
> a * b     #方法一
array([[1, 2],
  [6, 8]])
> np.multiply(a, b) #方法二
array([[1, 2],
  [6, 8]])

一句话新闻

高通与谷歌联手!首款骁龙PC优化Chrome浏览器发布
高通和谷歌日前宣布,推出首次面向搭载骁龙的Windows PC的优化版Chrome浏览器。
在对骁龙X Elite参考设计的初步测试中,全新的Chrome浏览器在Speedometer 2.1基准测试中实现了显著的性能提升。
预计在2024年年中之前,搭载骁龙X Elite计算平台的PC将面世。该浏览器的提前问世,有助于骁龙PC问世就获得满血表现。
谷歌高级副总裁Hiroshi Lockheimer表示,此次与高通的合作将有助于确保Chrome用户在当前ARM兼容的PC上获得最佳的浏览体验。